4.6 Article

Two-dimensional FeP@C nanosheets as a robust oxidase mimic for fluorescence detection of cysteine and Cu2+

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 8, Issue 33, Pages 7494-7500

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tb00215a

Keywords

-

Funding

  1. National Natural Science Foundation of China [21801132]

Ask authors/readers for more resources

In the past few years, the development of novel nanozymes with excellent performance has attracted increasing attention in biosensing. However, most of those nanozymes were found to possess peroxidase activity with the prerequisite of the presence of H2O2. In contrast, oxidase mimics can catalyze the oxidation of substrates without H2O2, delivering a higher signal-to-noise ratio than that of peroxidase mimics in practical applications. Herein, for the first time, two-dimensional (2D) nanosheets composed of iron phosphide embedded in a carbon matrix (FeP@C nanosheets) were found to demonstrate a robust oxidase-like property, different from those previously reported peroxidase mimics based on transition metal phosphides (TMPs). Based on this intriguing observation, the fluorescent substrate Amplex Red (AR) of peroxidase can be effectively oxidized by FeP@C nanosheets in the absence of H2O2. Benefiting from the oxidase-like enzymatic activity of the FeP@C nanosheets, a novel fluorescence sensing platform was developed for the detection of cysteine (Cys) and Cu2+. The outstanding performance of the 2D FeP@C nanosheets endows the proposed platform with superior sensitivity and selectivity compared to many previously reported approaches. Besides, the inherent features of simplicity, being label free, and low cost also allow this methodology to stand out among many other strategies, revealing its huge potential in practical analysis and detection applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available