4.6 Article

Actor-critic learning for optimal building energy management with phase change materials

Journal

ELECTRIC POWER SYSTEMS RESEARCH
Volume 188, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2020.106543

Keywords

Actor-critic; Approximate dynamic programming; Deep deterministic policy gradient; Home energy management; Phase change materials

Ask authors/readers for more resources

Energy management in buildings using phase change materials (PCM) to improve thermal performance is challenging due to the nonlinear thermal capacity of the PCM. To address this problem, this paper adopts a model-free actor-critic on-policy reinforcement learning method based on deep deterministic policy gradient (DDPG). The proposed approach overcomes the major weakness of model-based approaches, such as approximate dynamic programming (ADP), which require an explicit thermal model of the building under control. This requirement makes a plug-and-play implementation of the energy management algorithm in an existing smart meter difficult due to the wide variety of building design and construction types. To overcome this difficulty, we use a DDPG algorithm that can learn policies in continuous action spaces without access to the full dynamics of the building. We demonstrate the competitive performance of DDPG by benchmarking it against an ADP-based approach with access to the full thermal dynamics of the building.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available