4.7 Article

Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption

Journal

INORGANIC CHEMISTRY
Volume 56, Issue 24, Pages 14999-15005

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.7b02307

Keywords

-

Funding

  1. National Natural Science Foundation of China [21671142]
  2. Jiangsu Province Natural Science Fund for Distinguished Young Scholars [BK20160006]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  4. NSF [DMR-1506661]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1506661] Funding Source: National Science Foundation

Ask authors/readers for more resources

We report here the intrinsic advantages of a special family of porous chalcogenides for CO2 adsorption in terms of high selectivity of CO2/N-2, large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs+-, Rb+-, and K+-exchanged samples demonstrated excellent CO2 adsorption performance. Particularly, K@RWY has the superior CO2/N-2 selectivity with the N-2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 63 mmol/g (141 cm(3)/g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol(-1), the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available