4.7 Article

Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited

Journal

INORGANIC CHEMISTRY
Volume 56, Issue 14, Pages 8415-8422

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.7b01078

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [WA 2513/2, WA 2513/6]

Ask authors/readers for more resources

The pyrrolyl-based iron pincer compounds [((PNP)-P-tBu)FeCl] (1), [((PNP)-P-tBu)FeN2] (2), and [(tBuPNP)Fe(CO)(2)] (3) were prepared and structurally characterized. In addition, their electronic ground states were probed by various techniques including solid-state magnetic susceptibility and zero-field Fe-57 Mossbauer and X-band electron paramagnetic resonance spectroscopy. While the iron(II) starting material 1 adopts an intermediate-spin (S = 1) state, the iron(I) reduction products 2 and 3 exhibit a low-spin (S = 1/2) ground state. Consistent with an intermediate-spin configuration for 1, the zero-field 57Fe Mossbauer spectrum shows a characteristically large quadrupole splitting (iE(Q) approximate to 3.7 mm s(-1)), and the solid-state magnetic susceptibility data show pronounced zero-field splitting (|D| approximate to 37 cm(-1)). The effective magnetic moments observed for the iron(I) species 2 and 3 are larger than expected from the spin-only value and indicate an incompletely quenched orbital angular momentum and the presence of spinorbit coupling in the ground state. The experimental findings are complemented by density functional theory computations, which are in good agreement with the experimental data. Most notably, these calculations reveal a low-lying (S = 2) excited state for complex 1; furthermore, the computed Mossbauer parameters for all complexes studied herein are in excellent agreement with the experimental findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available