4.7 Article

Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage

Journal

CARBOHYDRATE POLYMERS
Volume 247, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.116687

Keywords

Biodegradable polymer; Mechanical reinforcement; Nanocomposite; Poly(butylene adipate-co-terephthalate); Cellulose nanocrystal

Funding

  1. Nation Key Research and Development Program of China [2016YFB0302400]
  2. Zhejiang Hengyi Petrochemicals Co. Ltd [HY20190101]
  3. National Natural Science Foundation of China [51903218]
  4. Zhejiang Provincial Natural Science Foundation of China [LR20B060002]
  5. Chinese State Key Laboratory of Chemical Engineering at Zhejiang University [SKLChE-19D02, SKL-ChE-19T03]

Ask authors/readers for more resources

Simultaneous stiffening, strengthening, and toughening of biodegradable polymers, such as poly(butylene adipate-co-terephthalate) (PBAT) and others, is necessary for their use in packaging and agriculture applications. However, a high content of nanoinclusions is usually required, leading to a tradeoff between composite toughness and strength or stiffness in the reinforcement. Herein, we report an iterative reinforcement strategy that uses one nanocomposite to reinforce PBAT. An in-situ grafting polymerized cellulose nanocrystal (CNC)/ PBAT (CNC-g-PBAT) nanocomposite consisting of ungrafted/free PBAT (PBAT(f)) was used as an inclusion directly to reinforce a commercial PBAT. M an exceptionally low CNC usage of 0.02 wt%, we achieved a simultaneous enhancement of the Young's modulus by 26 %, tensile strength by 27 %, elongation at break by 37 %, and toughness by 56 % over those for PBAT. To the best of our knowledge, such reinforcement efficiency is the highest among similar biodegradable polymer nanocomposites reported in the literature. The rheology, differential scanning calorimetry, and wide-angle X-ray diffraction measurements confirmed the mechanical reinforcement attributed to a synergistic contribution from PBAT(f) and CNC-g-PBAT. In particular, the use of PBAT(f) enhanced both stiffness and toughness of the composites, while the CNC-g-PBAT interacted within the polymer matrix and increased the crystallinity of the polymer matrix, leading to the strengthening and toughening effect. The strategy proposed here is greatly beneficial to producing high-performance biodegradable polymer nanocomposite films for packaging and agricultural applications using a very low amount of nanoinclusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available