4.6 Review

Palladium-catalyzed cross-couplings by C-O bond activation

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 10, Issue 17, Pages 5702-5739

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cy01159b

Keywords

-

Funding

  1. NSF [CAREER CHE-1650766]
  2. NIH [1R35GM133326]
  3. Rutgers University

Ask authors/readers for more resources

Although palladium-catalyzed cross-coupling of aryl halides and reactive pseudohalides has revolutionized the way organic molecules are constructed today across various fields of chemistry, comparatively less progress has been made in the palladium-catalyzed cross-coupling of less reactive C-O electrophiles. This is despite the fact that the use of phenols and phenol derivatives as bench-stable cross-coupling partners has been well-recognized to bring about major advantages over aryl halides, such as natural abundance of phenols, (2) avoidance of toxic halides, (3) orthogonal cross-coupling conditions, (4) prefunctionalization of phenolic substrates by electrophilic substitution or C-H functionalization, (5) ready availability of phenols from a different pool of precursors than aryl halides. In this review, we present an overview of recent advances made in the field of palladium-catalyzed cross-coupling of C-O electrophiles with a focus on catalytic systems, (2) reaction type, and (3) class of C-O coupling partners. Although the field has been historically dominated by nickel catalysis, it is now evident that the use of more versatile, more functional group tolerant and highly active palladium catalysts supported by appropriately designed ancillary ligands enables the cross-coupling with improved substrate scope and generality, and likely represents a practical solution to the broadly applicable cross-coupling of various C-O bonds across diverse chemical disciplines. The review covers the period through June 2020.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available