4.8 Article

A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 13, Issue 8, Pages 2441-2449

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee00351d

Keywords

-

Funding

  1. Basque Country Government under the Elkartek 18 program [CICe18]

Ask authors/readers for more resources

Metal ion capacitors (MICs) are foreseen to be a complementary alternative of vital importance to current energy storage issues, coupling high energy density delivered by batteries with high power/long cycle life offered by supercapacitors. The prime issues in realising this technology are pre-metallation and replacement of graphite electrodes that bring about an energy gain at the expense of power. Herein we present an easy-to-scale-up approach, combining activated carbon with a highly efficient and industrially compatible low-cost sacrificial salt (dimetal squarates) that can be used as a metal source for pre-metallation. Paired with a hard carbon electrode tailored to perform at high rates, lithium, sodium and potassium MICs are demonstrated. Furthermore, the successful fabrication of a lithium ion capacitor (LIC) pouch cell prototype with high energy at high power densities showing capacitance retention over 84% after 48 000 cycles validates the strategy. This breakthrough may trigger the easy and low-cost fabrication of LICs and significantly reduce technological barriers to market growth and consolidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available