4.7 Article

Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes)

Journal

CHEMOSPHERE
Volume 259, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127221

Keywords

EDC; Graphene oxide; Japanese medaka; Gonads; Liver; Kidney

Funding

  1. NIMHD [G12MD007581]
  2. NSF [HRD 1547754]

Ask authors/readers for more resources

Due to its unique properties, graphene oxide (GO) has potential for biomedical and electronic applications, however environmental contamination including aquatic ecosystem is inevitable. Moreover, potential risks of GO in aquatic life are inadequately explored. Present study was designed to evaluate GO as an endocrine disrupting chemical (EDC) using the model Japanese medaka (Oryzias latipes). GO was injected intraperitoneally (25-200 mg/g) once to breeding pairs and continued pair breeding an additional 21 days. Eggs laid were analyzed for fecundity and the fertilized eggs were evaluated for developmental abnormalities including hatching. Histopathological evaluation of gonads, liver, and kidneys was made 21 days post-injection. LD50 was found to be sex-dependent. Fecundity tended to reduce in a dose-dependent manner during early post-injection days; however, the overall evaluation showed no significant difference. The hatchability of embryos was reduced significantly in the 200 mg/g group; edema (yolk and cardiovascular) and embryo-mortality remained unaltered. Histopathological assessment identified black particles, probably agglomerated GO, in the gonads of GO-treated fish. However, folliculogenesis in stromal compartments of ovary and the composition of germinal elements in testis remained almost unaltered. Moreover, granulosa and Leydig cells morphology did not indicate any significant EDC-related effects. Although liver and kidney histopathology did not show GO as an EDC, some GO-treated fish accumulated proteinaceous fluid in hepatic vessels and induced hyperplasia in interstitial lymphoid cells (HIL) located in kidneys. GO agglomerated in medaka gonads after 21-days post-injection. However, gonad histopathology including granulosa and Leydig cells alterations were associated with GO toxicity rather than EDC effects. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available