4.8 Article

Cation-exchange construction of ZnSe/Sb2Se3hollow microspheres coated by nitrogen-doped carbon with enhanced sodium ion storage capability

Journal

NANOSCALE
Volume 12, Issue 34, Pages 17915-17924

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr04665e

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51702366]
  2. Taishan Scholar Foundation [ts201511019]
  3. Fundamental Research Funds for the Central Universities [17CX02037A]
  4. Key Research and Development Projects of Shandong Province [2019JZZY010331]

Ask authors/readers for more resources

Recently, anode materials with synergistic sodium storage mechanisms of conversion combined with alloying reactions for sodium ion batteries (SIBs) have received widespread attention due to their high theoretical capacities. In this work, through reacting with an appropriate concentration of Sb(3+)ions and a simple carbonization process, hollow ZnSe/Sb(2)Se(3)microspheres encapsulated in nitrogen-doped carbon (ZnSe/Sb2Se3@NC) are progressively synthesized based on a cation-exchange reaction, using polydopamine-coated ZnSe (ZnSe@PDA) microspheres as the precursor. Benefiting from the synergistic effects between the unique structure and composition characteristics, when serving as an anode material for SIBs, they result in higher sodium diffusion coefficients (8.7 x 10(-13)-3.98 x 10(-9)cm(2)s(-1)) and ultrafast pseudocapacitive sodium storage capability. Compared with ZnSe@NC and Sb2Se3@NCs exhibit, ZnSe/Sb2Se3@NC exhibits more stable capacity (438 mA h g(-1)at a current of 0.5 A g(-1)after 120 cycles) and superior rate performance (316 mA h g(-1)at 10.0 A g(-1)). Our work provides a convenient method to construct high performance anodes with tunable composition and structure for energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available