4.4 Review

Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound

Journal

CURRENT CANCER DRUG TARGETS
Volume 15, Issue 4, Pages 282-313

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1568009615666150311100610

Keywords

Drug delivery systems; liposomes; nanocarriers; triggered delivery; ultrasound

Categories

Funding

  1. American University of Sharjah

Ask authors/readers for more resources

Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in patients. To avoid these adverse effects, nanocarriers have been developed, which can be loaded with the chemotherapeutic agents, directed to the cancer site and, once there, are exposed to stimuli that will trigger the drug release. Liposomes can be chemically modified to increase their circulation time, their stability, and their sensitivity to specific stimulus. Additionally, ligands can be conjugated to their surface, allowing for their specific binding to receptors overexpressed on the surface of cancer cells and the subsequent internalization via endocytosis. Using a triggering mechanism, including temperature, ultrasound, enzymes or a change in pH, the release of the drug is controlled and induced inside the cells, hence avoiding drug release in systemic circulation, which in turn reduces the undesired side effects of conventional chemotherapy. Ultrasound has been widely studied as a drug release trigger from liposomes, due to its well-known physics and previous uses in medicine. This review focuses on liposome-based drug delivery systems, using different trigger mechanisms, with a focus on ultrasound. The physical mechanisms of ultrasound release are also investigated and the results of in vitro and in vivo studies are summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available