3.8 Article

Adhesion rupture in laminated glass: influence of adhesion on the energy dissipation mechanisms

Journal

GLASS STRUCTURES & ENGINEERING
Volume 5, Issue 3, Pages 397-410

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s40940-020-00136-4

Keywords

Laminated glass; PVB; Adhesion; Through Crack Tensile test

Ask authors/readers for more resources

When laminated glass shatters under impact, most of the energy dissipation occurs in the coupled delamination and stretching of the polymer interlayer between broken chunks of glass. The strong dependency of these mechanisms on interlayer nature, on loading rate and on temperature has been previously investigated: however, the effect of the interfacial adhesion is unexplored. In this work, a surface modification technique is proposed, along with a mechanical characterization of the debonding with the Through Crack Tensile Test. We show that while increasing adhesion has the effect of enhancing the energy required to propagate the delamination fronts as well as the stretch level of the delaminated interlayer, the dissipation associated to the stretching of the volume of the PVB interlayer seems unaffected. We attribute this effect to the competition between the changes in both stretch and stretch rate in the viscoelastic interlayer. Finally, we discuss the experimental observation of the limits of the steady-state debonding regime, related to the competition between adhesive crack propagation and cohesive failure in the interlayer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available