4.6 Article

A Cost-Effective 2-Channel OTDM System Implemented With Sinusoidally Modulated Light Source

Journal

IEEE ACCESS
Volume 8, Issue -, Pages 157504-157509

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3016969

Keywords

Optical time-division multiplexing; pulse-amplitude modulation (PAM)

Funding

  1. Institute for Information and Communications Technology Planning and Evaluation (IITP) - Korean Government [2017-0-00702]

Ask authors/readers for more resources

We propose to implement a 2-channel optical-time-division-multiplexed (OTDM) system for short-reach optical interconnects by using a sinusoidally modulated light source instead of a complicated mode-locked laser as an input pulse source. In this system, the OTDM signal is obtained by bit-interleaving two optical return-to-zero (RZ) signals generated by using the sinusoidally modulated light. We operate these RZ signals in the orthogonal in-phase and quadrature domains to avoid the unwanted beat components. After the transmission, the OTDM signal is detected by using single photodetector, and then processed by a 2 x 2 multiple-input multiple-output equalizer. For a demonstration, we generate 150-Gb/s OTDM signal operating in the 8-level pulse-amplitude modulated (PAM-8) format by using commercial LiNbO3 Mach-Zehnder modulators and transmit this OTDM signal over 1.9 km of the standard single-mode fiber (SSMF). In addition, we fabricate the proposed OTDM transmitter in an integrated silicon-photonics chip and use it to demonstrate the transmission of the 64-Gb/s OTDM PAM-4 signal over 2.2 km of SSMF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available