4.7 Article

Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 742, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140642

Keywords

Amorphous carbon nitride; Single-atom silver; Hollow tubular morphology; Visible light-driven photocatalysis; Naproxen; Detoxification

Funding

  1. National Natural Science Foundation of China [51908082, 41907107]
  2. Fundamental Research Funds for the Central Universities [2019CDQYCH0053]
  3. Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (CQ CSTC) [cstc2018jcyjAX0320]

Ask authors/readers for more resources

In this work, a novel strategy for building single-atom silver-induced amorphous graphitic carbon nitride (g-C3N4) with a hollow tubular morphology is developed. By forming a tubular supramolecular gel, silver is success-fully isolated by the nitrogen atoms in both melamine and nitrate anions, impeding agglomeration in the subsequent thermal polymerization. The high density of single-atom-dispersed silver (atomic ratio up to 11.6%) selectively breaks the hydrogen bonds in layered g-C3N4, leading to a fully amorphous structure. Silver-induced full amorphization not only enhances the visible light absorption of g-C3N4 but also accelerates charge transfer, endowing the as-prepared photocatalyst having the optimal silver content with 52 times higher surface area specific naproxen (NPX) removal activity than pure g-C3N4. Both density functional theory (DFT) calcula-tions and steric effects are applied to explain the degradation pathway of NPX. The toxicity of NPX is reduced by sufficient irradiation. This work provides useful insights into the design and morphology control of single metal ion-dispersed g-C3N4 for environmental applications. (C) 2020 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available