4.7 Article Data Paper

CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil

Journal

EARTH SYSTEM SCIENCE DATA
Volume 12, Issue 3, Pages 2075-2096

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-12-2075-2020

Keywords

-

Funding

  1. CNPq (Brazilian National Council for Scientific and Technological Development)
  2. Swiss National Sciences Foundation [P400P2_180791]
  3. Swiss National Science Foundation (SNF) [P400P2_180791] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

We introduce a new catchment dataset for large-sample hydrological studies in Brazil. This dataset encompasses daily time series of observed streamflow from 3679 gauges, as well as meteorological forcing (precipitation, evapotranspiration, and temperature) for 897 selected catchments. It also includes 65 attributes covering a range of topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables, as well as data quality indicators. This paper describes how the hydrometeorological time series and attributes were produced, their primary limitations, and their main spatial features. To facilitate comparisons with catchments from other countries, the data follow the same standards as the previous CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) datasets for the United States, Chile, and Great Britain. CAMELS-BR (Brazil) complements the other CAMELS datasets by providing data for hundreds of catchments in the tropics and the Amazon rainforest. Importantly, precipitation and evapotranspiration uncertainties are assessed using several gridded products, and quantitative estimates of water consumption are provided to characterize human impacts on water resources. By extracting and combining data from these different data products and making CAMELS-BR publicly available, we aim to create new opportunities for hydrological research in Brazil and facilitate the inclusion of Brazilian basins in continental to global large-sample studies. We envision that this dataset will enable the community to gain new insights into the drivers of hydrological behavior, better characterize extreme hydroclimatic events, and explore the impacts of climate change and human activities on water resources in Brazil. The CAMELS-BR dataset is freely available at https://doi.org/10.5281/zenodo.3709337 (Chagas et al., 2020).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available