4.7 Article

The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)

Journal

GEOSCIENTIFIC MODEL DEVELOPMENT
Volume 13, Issue 9, Pages 3995-4018

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/gmd-13-3995-2020

Keywords

-

Funding

  1. NSF through the Decision Making Under Uncertainty program [SES-1463644]
  2. NSF NRT program [DGE-1735359]
  3. NSF Graduate Research Fellowship Program [DGE-1746045]
  4. MACMIT project through the German Federal Ministry of Education and Research (BMBF) [01LN1317A]
  5. NASA [NNX16AK38G]
  6. NASA Earth Sciences Directorate/GISS Climate Impacts Group
  7. European Research Council Synergy [ERC-2013-SynG-610028]
  8. Newton Fund through the Met Office program Climate Science for Service Partnership Brazil (CSSP Brazil)
  9. IMPREX research project - European Commission under the Horizon 2020 Framework program [641811]
  10. Swedish strong research area BECC
  11. Swedish strong research area MERGE
  12. LUCCI (Lund University Centre for studies of Carbon Cycle and Climate Interactions)
  13. Texas Agrilife Research and Extension, Texas A M University
  14. Office of Science of the US Department of Energy as part of the MultiSector Dynamics Research Program Area
  15. NASA [NNX16AK38G, 901921] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available