4.6 Article

Fast-Charging of Automotive Lithium-Ion Cells: In-Situ Lithium-Plating Detection and Comparison of Different Cell Designs

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 13, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abb564

Keywords

-

Ask authors/readers for more resources

Fast-charging is a key requirement for customer acceptance of battery electric vehicles. In this work, various methods for lithium-plating detection are applied to prismatic hard-case lithium-ion cells to demonstrate their applicability for large-format automotive cells despite possible thermal and electrochemical inhomogeneities. Different fast-charging profiles with a charging time of less than 30 min from 10% to 80% state-of-charge are examined with methods based on coulombic efficiency, cell voltage analysis and swelling force. To validate these results, a lifetime cycling test with a subsequent cell opening is performed, followed by a discussion on lithium-plating detectability and the restrictions of each method. In order to further illustrate the applicability of the lithium-plating detection methods, the fast-charging ability of two cells with the same format but different cathode active materials, namely NMC622 and NMC811, are compared. Furthermore, a coupled electrochemical-thermal simulation is performed to study the effect of the cell design on the fast-charging ability and to elucidate why a higher cell energy density does not necessarily lead to a worse fast-charging ability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available