4.6 Article

Exploring hydrophobic diastereomeric 2,6-anhydro-glycoheptitols for their enzymatic polymerization with PEG: towards delivery applications

Journal

NEW JOURNAL OF CHEMISTRY
Volume 44, Issue 36, Pages 15369-15375

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nj02642e

Keywords

-

Funding

  1. University of Delhi under the DU-DST purse grant
  2. CSIR, New Delhi

Ask authors/readers for more resources

Two sugar PEG-based amphiphilic copolymers have been synthesized by Novozym (R)-435-catalyzed greener solvent free transesterification reaction of diastereomeric 2,6-anhydro-3,4,5-tri-O-benzyl-glucoheptitol and 2,6-anhydro-3,4,5-tri-O-benzyl-mannoheptitol with PEG-1000 diethyl ester in 80 and 76% yields, respectively. It has been observed that the configurational change at one of the carbons of diastereomeric 2,6-anhydro-heptitols has significant bearing on the degree of polymerization and characteristics of the synthesized polymers. Thus, the study of physico-chemical characteristics of synthesized anhydroglucoheptitol- and anhydromannoheptitol-PEG copolymers revealed that their aqueous solution forms spherical micelles of hydrodynamic diameters 11.2 and 6.4 nm, respectively. Micelles derived from both the amphiphilic copolymers have the potential to solubilize the hydrophobic dye, Nile red. Furthermore, a fluorescence microscopy study revealed that Nile red encapsulated micelles of synthesized amphiphilic copolymers uniformly internalized in A549 cells and thus can be used as a cargo carrier in biological systems. The viability of A549 cells was found to be very high even at a concentration of 500 mu g mL(-1)of copolymer indicating that they are cyto-compatible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available