4.8 Article

Induction of DNA Methylation by Artificial piRNA Production in Male Germ Cells

Journal

CURRENT BIOLOGY
Volume 25, Issue 7, Pages 901-906

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2015.01.060

Keywords

-

Funding

  1. Ministry of Education, Science, Sports, and Culture
  2. Core Research for Evolutional Science and Technology (CREST)
  3. Grants-in-Aid for Scientific Research [24700430, 26430100] Funding Source: KAKEN

Ask authors/readers for more resources

Global DNA demethylation and subsequent de novo DNA methylation take place in mammalian male embryonic germ cells [1-3]. P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), which are germline-specific small RNAs, have been postulated to be critically important for de novo DNA methylation of retrotransposon genes, and many proteins, including PIWI family proteins, play pivotal roles in this process [4-6]. In the embryonic mouse testis, two mouse PIWI proteins, mouse PIWI-like (MILI) and mouse PIWI2 (MIWI2), are involved in the biogenesis of piRNAs through the so-called ping-pong amplification cycle [7-10], and long single-stranded RNAs transcribed from the gene regions of piRNA clusters have been proposed to be the initial material [11-16]. However, it remains unclear whether transcription from the piRNA clusters is required for the biogenesis of piRNAs. To answer this question, we developed a novel artificial piRNA production system by simple expression of sense and antisense EGFP mRNAs in embryonic male germ cells in the piRNA biogenesis phase. EGFP expression was silenced by piRNA-dependent DNA methylation, indicating that concomitant expression of sense and antisense RNA transcripts is necessary and sufficient for piRNA production and subsequent piRNA-dependent gene silencing. In addition, we demonstrated that this artificial piRNA induction paradigm could be applied to an endogenous gene essential for spermatogenesis, DNM T3L [3, 17, 18]. This study not only provides novel insights into the molecular mechanisms of piRNA production, but also presents an innovative strategy for inducing epigenetic modification in germ cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available