4.8 Review

On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics

Journal

CHEMICAL SOCIETY REVIEWS
Volume 49, Issue 18, Pages 6524-6528

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cs00579g

Keywords

-

Funding

  1. U.S. National Cancer Institute [R01 CA090689]

Ask authors/readers for more resources

Contrary to frequent reports in the literature, hydroxyl radical is not a key species participating in endogenous oxidative DNA damage. Instead, carbonate radical anion is formed from the Fenton reaction under cellular conditions and from decomposition of nitrosoperoxycarbonate generated during inflammation. Carbonate radical anion is a potent one-electron oxidant capable of generating base radical cations that can migrate over long distances in duplex DNA, ultimately generating 8-oxo-7,8-dihydroguanine at a redox-sensitive sequence such as GGG. Such a mechanism enables G-quadruplex-forming sequences to act as long-range sensors of oxidative stress, impacting gene expressionviathe DNA repair mechanism that reads and ultimately erases the oxidized base. With a writing, reading and erasing mechanism in place, oxidative 'damage' to DNA might be relabeled as 'epigenetic' modifications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available