4.6 Article

An Improved Lightning Attachment Procedure Optimizer for Optimal Reactive Power Dispatch With Uncertainty in Renewable Energy Resources

Journal

IEEE ACCESS
Volume 8, Issue -, Pages 168721-168731

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3022846

Keywords

Optimization; Uncertainty; Wind speed; Lightning; Reactive power; Particle swarm optimization; Load modeling; Optimal reactive power dispatch; renewable energy; lightning attachment procedure optimization; power losses; uncertainty

Funding

  1. NSFC, China-ASRT, Egypt [51861145406]

Ask authors/readers for more resources

Integrating renewable energy resources (RERs) has become the head of concern of the modern power system to diminish the dependence of using conventional energy resources. However, intermittent, weather dependent, and stochastic natural are the main features of RESs which lead to increasing the uncertainty of the power system. This paper addresses the optimal reactive power dispatch (ORPD) problem using an improved version of the lightning attachment procedure optimization (LAPO), considering the uncertainties of the wind and solar RERs as well as load demand. The improved lightning attachment procedure optimization (ILAPO) is proposed to boost the searching capability and avoid stagnation of the traditional LAPO. ILAPO is based on two improvements: i) Levy flight to enhance the exploration process, ii) Spiral movement of the particles to improve the exploitation process of the LAPO. The scenario-based method is used to generate a set of scenarios captured from the uncertainties of solar irradiance and wind speed as well as load demand. The proposed ILAPO algorithm is employed to, optimally, dispatch the reactive power in the presence of RERs. The power losses and the total voltage deviations are used as objective functions to be minimized. The proposed algorithm is validated using IEEE 30-bus system under deterministic and probabilistic conditions. The obtained results verified the efficacy of the proposed ILAPO for ORPD solution compared with the traditional LAPO and other reported optimization algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available