4.6 Article

Long Short-Term Memory Approach to Estimate Battery Remaining Useful Life Using Partial Data

Journal

IEEE ACCESS
Volume 8, Issue -, Pages 165419-165431

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3022505

Keywords

Recurrent neural network; long short-term memory; remaining useful life; battery management systems; feature selection

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 108-2622-8-006-014]

Ask authors/readers for more resources

Due to the increasing demand of electrical vehicles (EVs), prognostics of the battery state is of paramount importance. The nonlinearity of the signal (e.g. voltage) results in the complexity of analyzing the degradation of the battery. Aging characteristics extracted from the voltage, current, and temperature when the battery is fully charged/discharged were commonly used by previous researchers to determine the battery state. The drawbacks of the previous prediction algorithms are insufficient or irrelevant features to explicitly model the battery aging and the use of fully charged/discharged datasets, which might result in poor prediction accuracy. Therefore, this study proposes a feature selection technique to adequately select optimum statistical feature subset and the use of partial charge/discharge data to determine the battery remaining useful life (RUL) using Recurrent Neural Network - Long Short-Term Memory (RNN-LSTM). The proposed approach demonstrated exceptional RUL prediction results, with the root mean square error (RMSE) of 0.00286 and mean average error (MAE) of 0.00222 using partial discharge data. The proposed method shows prediction improvement in comparison with the use of full data and state-of-the-art outcomes from previous studies of the same open data from the National Aeronautics and Space Administration (NASA) prognostic battery data sets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available