4.7 Article

Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 272, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.122325

Keywords

Alkalinity; Carbonate recovery; Fluidized-bed reactor; Granule characteristics; Greenhouse gas mitigation

Funding

  1. Ministry of Science and Technology, Taiwan [MOST-102-2221-E-041-001-MY3]
  2. National Research Foundation of Korea through the Ministry of Education [2016R1A6A1A03012812]

Ask authors/readers for more resources

The era of industrialization has caused the drastic increase in atmospheric carbon dioxide concentrations that now require various remediation strategies such as CO2 capture and storage. In this study, calcium carbonate granulation is proposed as a new conversion route for CO2 trapped in water matrices into dense solids. Herein, we demonstrate the effectiveness of the fluidized-bed reactor to produce compact calcium carbonate pellets from captured CO2 via a granulation reaction at different pH conditions and in the absence of seed materials. Constant values of calcium-to-carbonate ratio, influent carbonate concentration and influx flow rate were used while operating pH was varied from 8.5 to 11.0. Optimal operating condition with carbonate removal and granulation efficiencies of 92% and 90%, respectively was found at pH of 10.0 +/- 0.2, where the lowest daily effluent concentration of carbonate ions was measured at 16.6 mg L-1 via the alkalinity test. At optimum operating pH, large compact granules ranging from 1 - 2 mm in diameter (similar to 93.6 g) were obtained with overall particle size distribution leaning towards bigger sizes. Morphological analyses of the granules revealed their smooth surfaces and subrounded shapes, while crystalline and elemental analyses identified these as high purity calcium carbonate. Moreover, spontaneous homogeneous nucleation, particle aggregation, crystal growth and granulation are proposed as the main mechanisms of calcium carbonate granulation. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available