4.7 Article

Dynamic porous coordination polymers built-up from flexible 4,4′-dithiodibenzoate and rigid N-based ligands

Journal

DALTON TRANSACTIONS
Volume 49, Issue 37, Pages 13142-13151

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt02411b

Keywords

-

Funding

  1. Spanish MINECO [RTI2018-095622-B-I00]
  2. Catalan AGAUR [2017 SGR 238]
  3. ERC under the EU-FP7 [ERC-Co 615954]
  4. CERCA Program/Generalitat de Catalunya
  5. Severo Ochoa program from the Spanish MINECO [SEV-2017-0706]

Ask authors/readers for more resources

Herein we report the design, synthesis, structural characterisation and functional testing of a series of Cu(ii) coordination polymers containing flexible 4,4'-dithiodibenzoate ligand (4,4'-DTBA), with or without auxiliary N-donor ligands. Reaction of Cu(ii) with 4,4'-DTBA yielded a 1D coordination polymer (1) based on Cu(s) paddlewheel units connected by 4,4'-DTBA, to form cyclic loop chains with intramolecular voids that exhibit reversible structural transformations upon subsequent solvent exchange in methanol to afford a new, crystalline, permanently-porous structure (1'). However, when the same reaction was run with pyridine, it formed a porous 2D coordination polymer (2). We have attributed the difference in dimensionality seen in the two products to the coordination of pyridine on the axial site of the Cu(o) paddle-wheel, which forces flexible 4,4'-DTBA to adopt a different conformation. Reactions in the presence of 4,4'-bipyridine (4,4'-bpy) afforded two new, flexible, 2D coordination polymers (3 & 4). Lower concentrations of 4,4'-bpy afforded a structure (3) built from 1D chains analogous to those in 1 and connected through 4,4'-bpy linkers coordinated to the axial positions. Interestingly, 3 showed reversible structural transformations triggered by either solvent exchange or thermal treatment, each of which yielded a new crystalline and permanently porous phase (3'). Finally, use of higher concentrations of 4,4'-bpy led to a coordination polymer (4) based on a distorted CuO3N2 trigonal bipyramid, rather than on the Cu(ii) paddlewheel. The connection of these motifs by 4,4'-DTBA resulted in a zig-zag 1D chain connected through 4,4'-bpy ligands to form a porous 2D network. Interestingly, 4 also underwent reversible thermal transformation to yield a microporous coordination polymer (4').

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available