4.7 Article

Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 204, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111061

Keywords

Cr(VI); Mitochondrial dynamics; Apoptosis; Autophagy; Renal injury

Funding

  1. National Natural Science Foundation of China [31972754, 31660726]

Ask authors/readers for more resources

The use of hexavalent chromium (Cr(VI)) in many industrial processes has resulted in serious environmental pollution problems. Cr(VI) causes organ toxicity in animals after ingestion or inhalation. However, the exact mechanism by which Cr(VI) produces kidney damage remains elusive. Herein, we investigated whether Cr(VI)-induced kidney damage is related to the disorder of mitochondrial dynamics. In this study, 28 male rats were divided into four groups and intraperitoneally injected with 0, 2, 4, and 6 mg/kg body weight potassium dichromate for 5 weeks. Experiment included analysis of renal histopathology and ultrastructure, determination of biochemical indicators, and measurement of related protein content. The results showed that Cr(VI) induced kidney injury through promotion of oxidative stress, apoptosis, and disorder of mitochondrial dynamics in a dose-dependent manner. The protein levels of the silent information regulator two ortholog 1 (Sirt1), pemxisome proliferation-activated receptor-g coactivator-1a (PGC-1a), and autophagy-related proteins were significantly decreased after Cr(VI) exposure. These findings suggest that Cr(VI) leads to the disorder of mitochondrial dynamics by inhibiting the Sirt1/PGC-1a pathway, which leads to renal apoptosis and autophagy in rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available