4.7 Article

Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 204, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111097

Keywords

Ferrihydrite; Humic acid; Iron (hydr) oxide-NOM composites; Mercury; Adsorption

Funding

  1. Ministry of Science and Technology of China for State Key Research and Development Project [2016YFC0400702]

Ask authors/readers for more resources

Iron (hydr)oxide-natural organic matter (NOM) colloids, the dominant components of soil, usually occur in varied circumstances and may affect Hg transport and fate in soil. This study aims to reveal the Hg binding to preformed composites rather than only focusing on Hg retention by iron (hydr)oxides in the presence of NOM. Ferrihydrite-humic acid (FH-HA) is chosen as a representative composite, and the effect of the complexation method and FH morphology on Hg binding to various composites is evaluated. Three types of composites are developed: a dense coprecipitated composite (p-d-f), a gel-like adsorbed composite (a-g-f) and a dense adsorbed (a-d-f) composite. Batch sorption and stirred-flow kinetic tests together with surface property analysis and modern spectral analyses are carried out to explore the binding behavior of Hg to the three composites and clarify the interactions in the ternary systems of FH-HA-Hg. The results show that the Hg sorption isotherms all fit well with the Langmuir model, and the maximum sorption capacities follow the order a-g-f> a-d-f > p-d-f, implying that the adsorbed composite is more favorable than the coprecipitated composite for Hg binding and a gel morphology is more beneficial than a dense morphology. The stirred-flow experiments show that the adsorbed composite has a small advantage in Hg sorption compared to the coprecipitated composite and that the gel-like composite can adsorb more Hg at a faster rate than the dense composite. Both FH and HA participate in Hg sorption, and FH-HA-Hg complexes are speculated to form. These findings are helpful to better understand the mobility and fate of Hg in soils, as well as the associated dynamic model for predicting Hg behavior in the environment where the iron (hydr) oxide-NOM composites are pre-existed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available