4.7 Article

Impacts of natural fractures on hydraulic fracturing treatment in all asymptotic propagation regimes

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.113296

Keywords

Mesh fragmentation; Fracture interaction; Unrestricted fracture propagation; Propagation regimes

Funding

  1. Petrobras [20234-1]
  2. Conselho Nacional de Pesquisa (CNPq) [308547/2016-0]
  3. Fundacao de Amparo a Pesquisa do Rio de Janeiro (FAPERJ) [E-26/202.928/2019, E-26/200.781/2019]

Ask authors/readers for more resources

Hydraulic fracturing is a technique in which pressurized fluid is pumped into the well to induce fracture propagation in the rock formation. The treatment aims at enhancing permeability and well-reservoir connectivity. However, the presence of natural fractures can impact the hydraulic fracture propagation, increasing the complexity of the hydraulic fracturing treatment, and affect the final configuration of the fracture network. Furthermore, different propagation regimes can develop depending on field conditions, properties of the porous matrix, fractures, the injection fluid, and time. This work introduces a robust fully coupled hydro-mechanical approach to investigate the impacts of natural fractures on hydraulic fracturing in four limiting propagation regimes: toughness-storage, toughness-leak-off, viscosity-storage, and viscosity-leak-off dominated. The proposed approach is based on the finite element method and incorporates the coupling of pore pressure/stress within the permeable rock formation and fracture propagation. An innovative mesh fragmentation technique with an intrinsic pore-cohesive zone approach is implemented in the in-house multiphysics framework to simulate fracture propagation with complex crack patterns. Cohesive Zone Model (CZM) represents the initiation and propagation of hydraulic fractures while a contact model with the Mohr-Coulomb criterion is used to represent the normal closure/opening and friction/shear dilation of natural fractures. The results of the new approach are compared against analytical and numerical solutions. Moreover, the influence of parameters such as rock permeability, fluid viscosity, initial stress state, and intercepting angle on the hydraulic and natural fracture is also investigated. The robustness of the presented methodology is demonstrated by simulating crossing with an offset, branching, fracture propagation from the tip of a natural crack, and interaction of multiple cracks. These results can provide guidance for a better understanding of the complex process of hydraulic fracturing. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available