4.6 Article

In situgrowth of nano-gold on anodized aluminum oxide with tandem nanozyme activities towards sensitive electrochemical nanochannel sensing

Journal

ANALYST
Volume 145, Issue 20, Pages 6617-6624

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0an01271h

Keywords

-

Funding

  1. National Natural Science Foundation of China [21775082, 21575074]
  2. Shandong Province Higher Educational Program for Young Innovation Talents
  3. Major Program of Shandong Province Natural Science Foundation [ZR2018ZC0127]
  4. Special Foundation for Distinguished Taishan Scholar of Shandong Province [ts201511052]

Ask authors/readers for more resources

Electrochemical nanochannel sensors have attracted extensive interest due to their potential applications in biosensing systems. In this work, porous anodized aluminum oxide (AAO) nanochannels are coupled with gold nanoparticles (AuNPs) through a polydopamine (PDA)-inducedin situgrowth process. It is found that the resulting hybrid nanochannel (denoted as Au-PDA-AAO) can act as both glucose oxidase- and peroxidase-like nanozymes to catalyze the cascade reaction involving glucose. To the best of our knowledge, this is the first report on the synthesis of nanozymes in an AAO nanochannel. Moreover, apart from the nanozyme-catalyzed colorimetric reaction, the Au-PDA-AAO nanochannel could simultaneously serve as a sensitive signal reporter for an electrochemical sensing platform. In such an approach, the glucose oxidation reaction boosts the resistance of the Au-PDA-AAO nanochannel towards ion transport based on the H2O2-mediated size enlargement of AuNPs, resulting in the varied transmembrane ionic current signal of the Au-PDA-AAO nanochannel. On the basis of the changed current-potential properties, the label-free detection of glucose can be achieved with a low detection limit, good reproducibility, and high stability. This work demonstrates the feasibility of the incorporation of versatile nanozymes into AAO nanochannels for mimicking multi-enzymatic catalysis reactions and detecting target analytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available