4.6 Article

DFT-Based Calculation of Dissolution Activation Energy and Kinetics of Ni-Cr Alloys

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 13, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abbbbd

Keywords

Corrosion modeling; Theory and Modelling; Corrosion; Surface Science

Funding

  1. Center for Performance and Design of Nuclear Waste Forms and Containers, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0016584]

Ask authors/readers for more resources

A density functional theory investigation of the process of dissolution of Ni and Cr adatoms from model Ni-Cr(111) alloy surfaces is presented, both in vacuum and with explicit water molecules. The goal is to understand how the electronic structures solved using DFT can provide insights as to changes in valence, energy and coordination of the adatoms in the process of dissolving from the alloy surface. It is found that nearby Cr solute atoms increase the dissolution activation energy of Ni. Cr adatoms have a similar dissolution activation energy as Ni adatoms, except for one particular surface configuration that has a much smaller dissolution activation energy, which might promote selective dissolution of Cr in Ni-Cr alloys. To interpret the first-principles modeling results for the potential energy trajectory along the dissolution reaction coordinate, we provide a thermodynamic breakdown of the various terms that contribute to the dissolution activation and total reaction energy. The role of addition of Cr is explored on the dissolution kinetics of a Ni-Cr alloys of varying composition by constructing a model for the corrosion current density with DFT-based activation energies. Finally, dissolution resistance index is proposed as a quantifiable descriptor of the dissolution resistance of corrosion resistant alloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available