4.7 Article

The interaction of sodium dodecyl sulfate with trypsin: Multi-spectroscopic analysis, molecular docking, and molecular dynamics simulation

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 162, Issue -, Pages 1546-1554

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.08.020

Keywords

Trypsin; Sodium dodecyl sulfate; Molecular dynamics simulation

Funding

  1. National Key Technology R&D Program of China [2017YFB0308400]

Ask authors/readers for more resources

The bioactivity of enzymes is sensitive to certain factors in their application environment, such as the pH, temperature, ionic strength, and additives, which can alter the native conformation of enzymes. To determine the mechanism by which the interaction of SDS influences the structure and activity of trypsin, molecular docking, molecular dynamics simulations, DSC, and multi-spectroscopic measures including UV absorption, fluorescence, and circular dichroism were used. The results show that the hydrolytic activity towards casein could be dramatically restrained by SDS. UV absorption, CD, and fluorescence spectra demonstrated the formation of a trypsin SDS complex. Thermodynamic parameters and molecular docking data revealed that the binding process was spontaneous, and that the main binding forces between SDS and trypsin were hydrogen bonds and van der Waals forces. In addition, molecular docking predicted that the binding site of SDS on trypsin was located at the active center. Molecular dynamic simulations showed that treatment with SDS resulted in the structure of trypsin becoming unstable and unfolded near its active center. This work provides insights into the interaction of SDS with trypsin on the molecular level and is beneficial to understanding of how SDS affects the conformation and activity of trypsin in application processes. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available