4.4 Article

Structural, electronic, and optical properties of bulk Cu2Se

Journal

CURRENT APPLIED PHYSICS
Volume 15, Issue 11, Pages 1417-1420

Publisher

ELSEVIER
DOI: 10.1016/j.cap.2015.08.006

Keywords

Solar cell; Cuprous chalcogenide; Photovoltaic material; van der Waals interaction; GW-Bethe-Salpeter equation approach; Density functional theory

Funding

  1. National Research Foundation of Korea Grant - Korean Government (MEST) [NRF-2010-C1AAA001-0029018]
  2. Ministry of Trade, Industry Energy [20132020000260]
  3. Research and Development Program of Korea Institute of Energy Research [B5-2414]
  4. Dongguk University Research Fund
  5. National Institute of Supercomputing and Network/Korea Institute of Science and Technology Information

Ask authors/readers for more resources

By using first-principles calculations within the density functional theory and the many-body perturbation theory, we investigate the structural, electronic, and optical properties of bulk Cu2Se with a recently discovered low-temperature layered configuration. We demonstrate that the effects of the van der Waals forces significantly modify the interlayer binding and distance in the layered Cu2Se, while the band gap is invariant. Our density functional theory and post-processing GW calculations reveal that for the layered structure, GW correction remedies the serious band-gap underestimation of the density functional theory from 0.12 eV to 0.99 eV. By solving the Bethe-Salpeter equation, we find that the optical gap of the layered Cu2Se is 0.86 eV, which is in close agreement with previous experimental observations. In addition, we show that the high-temperature fluorite structure has no band gap, even after GW correction, explaining that the band gap controversy among the theories stems from different structural models. This work may serve as an important guide in designing and evaluating photovoltaic devices using Cu2Se-based materials. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available