4.7 Article

Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 162, Issue -, Pages 1338-1357

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.06.138

Keywords

Bone tissue engineering; Chitosan; Dental pulp stem cells; Graphene oxide; Osteogenic differentiation; Thermosensitive injectable hydrogel

Funding

  1. RCPN at Tabriz University of Medical Sciences [61299]

Ask authors/readers for more resources

Here, we fabricated thermosensitive injectable hydrogel containing poly (N-isopropylacrylamide) (PNIPAAm)-based copolymer/graphene oxide (GO) composite with different feed ratio to chitosan (CS) as a natural polymer through physical and chemical crosslinking for the proliferation and differentiation of the human dental pulp stem cells (hDPSCs) to the osteoblasts. The PNIPAAm copolymer/GO composite was synthesized by free-radical copolymerization of (N-isopropylacrylamide) (NIPAAm), itaconic acid (IA) and maleic anhydride-modified poly(ethylene glycol) (PEG) in the presence of GO and used for the preparation of the hydrogels. The formulated hydrogels were evaluated for the porous architecture, rheological behavior, compressive strength, swelling property, in vitro degradation, hemocompatibility, biocompatibility, and differentiation. The hydrogel could enhance the deposition of minerals and the activity of alkaline phosphatase (ALP), in large part attributable to the oxygen and amine-containing functional groups of GO and CS. The engineered hydrogel could also upregulate the expression of the Runt-related transcription factor 2 and osteocalcin in the hDPSCs cultivated in both the normal and osteogenic media. It seems to promote the absorption of osteogenic inducer too. Based on our findings, the engineered hydrogel demonstrated the osteogenic potential, upon which it is proposed as a constructing scaffold in bone tissue engineering for the transplantation of hDPSCs. (C) 2020 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available