4.7 Article

Manganese (Mn) removal prediction using extreme gradient model

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 204, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111059

Keywords

Mn removal prediction; Removal efficiency; XGBoost model; Environmental assessment; Random forest

Ask authors/readers for more resources

Exploring the Manganese (Mn) removal prediction with several independent variables is tremendously critical and indispensable to understand the pattern of removal process. Mn is one of the key heavy metals (HMs) stipulated by the WHO for the development of many attributes of the ecosystem in controlled quantity. In the present paper, an extreme gradient model (XGBoost) is proposed for Mn prediction. A compressive statistical analysis reveals the stochastics behaviour of the data prior to the prediction investigation. The main goal is to determine the Mn predictability of XGBoost algorithm with influencing factors such as D(2)EHPA (M), Time (min), H2SO4(M), NaCl (g/L), and EDTA (mM). The PCA biplot signifies the importance of the predictors. The XGBoost model validated against a diversity of data-driven models such as multilinear regression (MLR), support vector machine (SVM), and random forest (RF). The order of the applied models' performance are XGBoost > RF > SVM > MLR as per their R-2 and RMSE metrics over testing phase i.e. 20.88, 0.75, 0.61, 0.40, and 2.23, 3.01, 3.51, 6.38, respectively. Moreover, the Taylor diagram and Radar chart have drown to emphasize the XGBoost model efficiency, stability, and reliability. In respect of XGBoost model prediction, 'Time' predictor outperforms D(2)EHPA, EDTA, H2SO4, and NaCl predictors in order.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available