4.7 Article

Waste sludge from shipping docks as a catalyst to remove amoxicillin in water with hydrogen peroxide and ultrasound

Journal

ULTRASONICS SONOCHEMISTRY
Volume 68, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ultsonch.2020.105187

Keywords

Shipping docks; Wastewater; Heterogeneous catalyst; AMX; Sonication; Kinetic study

Funding

  1. Bushehr University of Medical Sciences [BPUMS-97-h11]
  2. Canada Research Chairs program

Ask authors/readers for more resources

The waste sludge from shipping docks contains important elements that can be used as a catalyst after proper processing. The purpose of this study was to remove of amoxicillin (AMX) from the aquatic environment using waste sludge from shipping docks as catalyst in the presence of hydrogen peroxide/ultrasound waves. The catalyst was produced by treating waste sludge at 400 degrees C for 2 h. N-2 adsorption, SEM, XRD, XRF, and FTIR techniques characterized the structural and physical properties of the catalyst. The BET-specific surface area of the catalyst reduced after AMX removal from 4.4 m(2)/g to 3.6 m(2)/g. To determine the optimal removal conditions, the parameters of the design of experiments were pH (5-9), contaminant concentration (5-100 mg/L), catalyst dosage (0.5-6 g/L), and concentration of hydrogen peroxide (10-100 mM). The maximum removal of AMX (98%) was obtained in the catalyst/hydrogen peroxide/ultrasound system at pH 5, catalyst dose of 4.5 g/L, H2O2 concentration of 50 mM, AMX concentration of 5 mg/L, and contact time of 60 mM. The kinetics of removal of AMX from urine (k = 0.026 1/min), hospital wastewater (k = 0.021 1/min), and distilled water (k = 0.067 1/min) followed a first-order kinetic model (R-2 > 0.91). The catalyst was reused up to 8 times and the AMX removal decreased to 45% in the last use. The byproducts and reaction pathway of AMX degradation were also investigated. The results clearly show that to achieve high pollutant removal rate the H2O2/ultrasound and catalyst/ultrasound synergy plays a key role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available