4.7 Article

Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications

Journal

CARBOHYDRATE POLYMERS
Volume 247, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.116707

Keywords

Bacterial cellulose; Magnetite nanoparticles; Nanobiotechnology; Nanomedicine

Ask authors/readers for more resources

This paper deals with the preparation of novel magnetic materials made from tetraaza macrocyclic Schiff base bacterial cellulose ligands with magnetite nanoparticles (Fe(3)O(4)NPs) through a multi-step procedure for antimicrobial and cytotoxic activities and chemotherapy in cancer treatment. First, the 2,3-dialdehyde bacterial cellulose (DABC) was chemically modified by ethylenediamine (EDA) and benzil (Bzl) in the presence of ferrous ions. Then, the magnetite nanoparticles (Fe(3)O(4)NPs) was produced inside the complex [Fe(DABC-EDA-Bzl)Cl-2] through a co-precipitation method. In nanobiotechnology, the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material was showed moderate antimicrobial and cytotoxic activities against different species and cells, respectively. In particular, the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material have not any cytotoxic activity towards peripheral blood mononucleocyte (PBMC) cells. Anti-tumor studies demonstrated that the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material effectively inhibits the growth of the CT26 tumor model in BALB/c mice compared with other resulting materials throughout the experimental period and can be effective drug delivery in nanomedicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available