4.5 Article

Fer1L5, a Dysferlin Homologue Present in Vesicles and Involved in C2C12 Myoblast Fusion and Membrane Repair

Journal

BIOLOGY-BASEL
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/biology9110386

Keywords

dysferlin; myoferlin; vesicles; myoblast fusion; membrane repair

Categories

Funding

  1. Tamil Nadu government
  2. Muscular Dystrophy Campaign (UK)
  3. Jain foundation (USA) through Durham University (UK)
  4. King Saud University, Riyadh, Saudi Arabia [RSP-2020/20]
  5. Soonchunhyang University Research Fund

Ask authors/readers for more resources

Simple Summary Fer1L5 is a dysferlin and myoferlin homologue and has been implicated in muscle membrane fusion events; myoblast fusion and membrane repair respectively during C2C12 skeletal muscle development. The role of Fer1L5 was analyzed by immunoblot analysis, biochemical fractionation, confocal microscopy and electroporation method. We demonstrated that Fer1L5 is present in low density vesicles and resistant to non-ionic detergent and shows overlapping properties with dysferlin and myoferlin. The expression of Fer1L5 was highly observed at the fusing myoblasts membranes and its expression level is gradually increase at the early stages multinucleated myotube formation. Fusion defects were observed in the Fer1L5 deficient C2C12 cells. Fer1L5 shows impaired membrane repair. Our data provide evidence that Fer1L5 is involved in aligning the adjacent myotubes close to each other for membrane-membrane fusion to increase the muscle mass for contraction during muscle development. Our data for Fer1L5 will be of great importance in the dysferlinopathy research in near future. Fer1L5 is a dysferlin and myoferlin related protein, which has been predicted to have a role in vesicle trafficking and muscle membrane fusion events. Mutations in dysferlin and otoferlin genes cause heredity diseases: muscular dystrophy and deafness in humans, respectively. Dysferlin is implicated in membrane repair. Myoferlin has a role in myogenesis. In this study, we investigated the role of the Fer1L5 protein during myoblast fusion and membrane repair. To study the functions of Fer1L5 we used confocal microscopy, biochemical fractionation, Western blot analysis and multiphoton laser wounding assay. By immunolabelling, Fer1L5 was detected in vesicular structures. By biochemical fractionation Fer1L5 was observed in low density vesicles. Our studies show that the membranes of Fer1L5 vesicles are non-resistant to non-ionic detergent. Partial co-staining of Fer1L5 with other two ferlin vesicles, respectively, was observed. Fer1L5 expression was highly detected at the fusion sites of two apposed C2C12 myoblast membranes and its expression level gradually increased at D2 and reached a maximum at day 4 before decreasing during further differentiation. Our studies showed that Fer1L5 has fusion defects during myoblast fusion and impaired membrane repair when the C2C12 cultures were incubated with inhibitory Fer1L5 antibodies. In C2C12 cells Fer1L5 vesicles are involved in two stages, the fusion of myoblasts and the formation of large myotubes. Fer1L5 also plays a role in membrane repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available