4.7 Article

Channel Estimation and Passive Beamforming for Intelligent Reflecting Surface: Discrete Phase Shift and Progressive Refinement

Journal

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Volume 38, Issue 11, Pages 2604-2620

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2020.3007056

Keywords

Channel estimation; Training; Array signal processing; Data communication; Wireless communication; Hardware; Intelligent reflecting surface; channel estimation; passive beamforming; discrete phase shift

Ask authors/readers for more resources

Prior studies on intelligent reflecting surface (IRS) have mostly assumed perfect channel state information (CSI) available for designing the IRS passive beamforming as well as the continuously adjustable phase shift at each of its reflecting elements, which, however, have simplified two challenging issues for implementing IRS in practice, namely, its channel estimation and passive beamforming designs both under the constraint of discrete phase shifts. To address them, we consider in this paper an IRS-aided single-user communication system and design the IRS training reflection matrix for channel estimation as well as the passive beamforming for data transmission, both subject to the new constraint of discrete phase shifts. We show that the training reflection matrix design with discrete phase shifts greatly differs from that with continuous phase shifts, and the corresponding passive beamforming design should take into account the correlated IRS channel estimation errors due to discrete phase shifts. Moreover, a novel hierarchical training reflection design is proposed to progressively estimate IRS elements' channels over multiple time blocks by exploiting the IRS-elements grouping and partition. Based on the resolved IRS channels in each block, we further design the progressive passive beamforming at the IRS with discrete phase shifts to improve the achievable rate for data transmission over the blocks. Extensive numerical results are presented, which demonstrate the significant performance improvement of proposed channel estimation and passive beamforming designs as compared to various benchmark schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available