4.7 Article

Mutations on COVID-19 diagnostic targets

Journal

GENOMICS
Volume 112, Issue 6, Pages 5204-5213

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2020.09.028

Keywords

-

Funding

  1. NIH [GM126189]
  2. NSF [DMS-1721024, DMS-1761320, IIS1900473]
  3. Michigan Economic Development Corporation
  4. George Mason University award [PD45722]
  5. Bristol-Myers Squibb
  6. Pfizer

Ask authors/readers for more resources

Effective, sensitive, and reliable diagnostic reagents are of paramount importance for combating the ongoing coronavirus disease 2019 (COVID-19) pandemic when there is neither a preventive vaccine nor a specific drug available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It will cause a large number of false-positive and false-negative tests if currently used diagnostic reagents are undermined. Based on genotyping of 31,421 SARS-CoV-2 genome samples collected up to July 23, 2020, we reveal that essentially all of the current COVID-19 diagnostic targets have undergone mutations. We further show that SARS-CoV-2 has the most mutations on the targets of various nucleocapsid (N) gene primers and probes, which have been widely used around the world to diagnose COVID-19. To understand whether SARS-CoV-2 genes have mutated unevenly, we have computed the mutation rate and mutation h-index of all SARS-CoV-2 genes, indicating that the N gene is one of the most non-conservative genes in the SARS-CoV-2 genome. We show that due to human immune response induced APOBEC mRNA (C > T) editing, diagnostic targets should also be selected to avoid cytidines. Our findings might enable optimally selecting the conservative SARS-CoV-2 genes and proteins for the design and development of COVID-19 diagnostic reagents, prophylactic vaccines, and therapeutic medicines. Availability: Interactive real-time online Mutation Tracker.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available