4.8 Article

Ion-specific clustering of metal-amphiphile complexes in rare earth separations

Journal

NANOSCALE
Volume 12, Issue 39, Pages 20202-20210

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr04231e

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]
  2. U.S. DOE [DE-AC02-06CH11357]

Ask authors/readers for more resources

The nanoscale structure of a complex fluid can play a major role in the selective adsorption of ions at the nanometric interfaces, which is crucial in industrial and technological applications. Here we study the effect of anions and lanthanide ions on the nanoscale structure of a complex fluid formed by metal-amphiphile complexes, using small angle X-ray scattering. The nano- and mesoscale structures we observed can be directly connected to the preferential transfer of light (La and Nd) or heavy (Er and Lu) lanthanides into the complex fluid from an aqueous solution. While toluene-based complex fluids containing trioctylmethylammonium-nitrate (TOMA-nitrate) always show the same mesoscale hierarchical structure regardless of lanthanide loading and prefer light lanthanides, those containing TOMA-thiocyanate show an evolution of the mesoscale structure as a function of the lanthanide loading and prefer heavy lanthanides. The hierarchical structure indicates the presence of attractive interactions between ion-amphiphile aggregates, causing them to form clusters. A clustering model that accounts for the hard sphere repulsions and short-range attractions between the aggregates has been adapted to model the X-ray scattering results. The new model successfully describes the nanoscale structure and helps in understanding the mechanisms responsible for amphiphile assisted ion transport between immiscible liquids. Accordingly, our results imply different mechanisms of lanthanide transport depending on the anion present in the complex fluid and correspond with anion-dependent trends in rare earth separations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available