4.7 Article

Leachability of endocrine disrupting chemicals (EDCs) in municipal sewage sludge: Effects of EDCs interaction with dissolved organic matter

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 742, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140366

Keywords

Leaching behaviors; Hydrophobic/specific interaction; Hydrogen bonding; Fluorescence quenching; Competition

Funding

  1. China Scholarship Council (CSC)

Ask authors/readers for more resources

In this study, experiments were performed to assess the significance of dissolved organic matter (DOM) on the leachability of four common EDCs, i.e., bisphenol A (BPA), 17 alpha-ethinylestradiol (EE2), progesterone (PGT) and testosterone (TST), in municipal sewage sludge (MSS) under landfill conditions. The DOM was derived from two sources: MSS (MDOM), and natural soil represented by organic matter obtained from the Suwannee River (NDOM). Fluorescence excitation-emission matrix quenching combined with parallel factor analysis was adopted to characterize the interaction properties between the EDCs and DOM. The accumulative leachability of the target EDCs ranged from 0.09% (PGT) to 3.8% (TST). In particular, the leaching of BPA, EE2 and TST followed S-shaped curves, while PGT exhibited continuous leaching potential in untreated MSS. With the introduction of DOM, (i) the leachability of BPA and EE2 increased to 13A% and 61.6%, respectively, whereas those of PGT and 1ST declined by 61.3% and 45.8%, respectively, and (ii) BPA, EE2 and PGT no longer reached leaching equilibrium but the S-shaped leaching property of TST persisted. The differential effects of MDOM and NDOM at identical concentrations on the EDCs leachability increased with curing time. BPA, EE2 and PGT quenched the MDOM fluorophores attributed to aromatic protein-like components. The fluorescence quenching of NDOM by BPA. EE2 and PGT was centered on soluble microbial by-product-like and humic-like substances. Compared with PGT, EE2 and BPA had greater capability for binding with DOM components largely via hydrophobic interactions, whereas PGT preferentially interacted with the DOM hydrophilic functionalities through specific interactions. TST had no binding capability but displayed potentials competing for sorption sites with DOM moieties. Our findings suggested that the management of MSS increased the risk of environmental contamination by EDCs for a long duration and that DOM was a useful indicator to predict the migration and transport properties of EDCs. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available