4.8 Article

Ordered Hydrogen-Bonded Alcohol Networks Confined in Lewis Acid Zeolites Accelerate Transfer Hydrogenation Turnover Rates

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 45, Pages 19379-19392

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c09825

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0016214]
  2. U.S. Department of Energy (DOE) [DE-SC0016214] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The disruption of ordered water molecules confined within hydrophobic reaction pockets alters the energetics of adsorption and catalysis, but a mechanistic understanding of how nonaqueous solvents influence catalysis in microporous voids remains unclear. Here, we use kinetic analyses coupled with IR spectroscopy to study how alkanol hydrogen-bonding networks confined within hydrophobic and hydrophilic zeolite catalysts modify reaction free energy landscapes. Hydrophobic Beta zeolites containing framework Sn atoms catalyze the transfer hydrogenation reaction of cyclohexanone in a 2-butanol solvent 10x faster than their hydrophilic analogues. This rate enhancement stems from the ability of hydrophobic Sn-Beta to inhibit the formation of extended liquid-like 2-butanol oligomers and promote dimeric H-bonded 2-butanol networks. These different intraporous 2-butanol solvent structures manifest as differences in the activation and adsorption enthalpies and entropies that comprise the free energy landscape of transfer hydrogenation catalysis. The ordered H-bonding solvent network present in hydrophobic Sn-Beta stabilizes the transfer hydrogenation transition state to a greater extent than the liquid-like 2-butanol solvent present in hydrophilic Sn-Beta, giving rise to higher turnover rates on hydrophobic Sn-Beta. Additionally, reactant adsorption within hydrophobic Sn-Beta is driven by the breakup of intraporous solvent-solvent interactions, resulting in positive enthalpies of adsorption that are partially compensated by an increase in the solvent reorganization entropy. Collectively, these results emphasize the ability of the zeolite pore to regulate the structure of confined nonaqueous H-bonding solvent networks, which offers an additional dimension to modulate adsorption and reactivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available