4.7 Article

The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4V

Journal

MATERIALS CHARACTERIZATION
Volume 169, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2020.110576

Keywords

Additive manufacturing; Crack initiation; Porosity; Schmid factor; Titanium alloy

Funding

  1. WAAMMat programme
  2. Coventry University
  3. Engineering and Physical Sciences Research Council (EPSRC) through the programme grant NEWAM [EP/R027218/1]
  4. EPSRC [EP/R027218/1] Funding Source: UKRI

Ask authors/readers for more resources

Titanium alloys such as Ti-6Al-4V built by most of the additive manufacturing processes are known to contain process induced defects, non-conventional microstructure and strong crystallographic texture; all of which can affect the fatigue strength. In this study we evaluated the effect of crystallographic orientation of alpha and alpha lath width around gas pore defects on the high cycle fatigue life of Wire + Arc Additive Manufactured Ti-6Al-4V by means of Electron Back Scattered Diffraction. Here we show that variations in crystallographic orientation of alpha lath and its width in the vicinity of the crack initiating defect were the main reasons for the considerable scatter in fatigue life. Pyramidal slip systems with high Schmid factor active around the defects resulted in longer fatigue life compared to pyramidal slip with lower Schmid factor. In the absence of pyramidal slip, cracks initiated from active prismatic slip systems. When considering the influence of the microstructure, a higher number of smaller alpha laths around the defect resulted in longer fatigue life, and vice versa. Overall, the fatigue crack initiation stage was controlled collectively by the complex interaction of porosity characteristics, alpha lath width and its crystallographic orientation at the crack initiation location.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available