4.7 Article

Deep learning merger masses estimation from gravitational waves signals in the frequency domain

Journal

PHYSICS LETTERS B
Volume 810, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2020.135790

Keywords

-

Funding

  1. CODI projects [2015-4044, 2016-10945]
  2. UDEA

Ask authors/readers for more resources

Detection of gravitational waves (GW) from compact binary mergers provides a new window into multimessenger astrophysics. The standard technique to determine the merger parameters is matched filtering, consisting in comparing the signal to a template bank. This approach can be time consuming and computationally expensive due to the large amount of experimental data which needs to be analyzed. In the attempt to find more efficient data analysis methods we develop a new frequency domain convolutional neural network (FCNN) to predict the merger masses from the spectrogram of the detector signal, and compare it to time domain neural networks (TCNN). Since FCNNs are trained using spectrograms, the dimension of the input is reduced as compared to TCNNs, implying a substantially lower number of model parameters, and consequently less over-fitting. The additional time required to compute the spectrogram is approximately compensated by the lower execution time of the FCNNs, due to the lower number of parameters. In our analysis FCNNs show a slightly better performance on validation data and a substantially lower over-fit, as expected due to the lower number of parameters, providing a new promising approach to the analysis of GW detectors data, which could be further improved in the future by using more efficient and faster computations of the spectrogram. (C) 2020 Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available