4.8 Article

Effects of carbon nanotube-mediated Caspase3 gene silencing on cardiomyocyte apoptosis and cardiac function during early acute myocardial infarction

Journal

NANOSCALE
Volume 12, Issue 42, Pages 21599-21604

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr05032f

Keywords

-

Funding

  1. National Natural Science Foundation of China [81700276, 31971317]

Ask authors/readers for more resources

RNA interference (RNAi) technology can achieve efficient and specific silencing of Caspase3 gene expression, thus providing new options for anti-apoptosis treatment. However, delivering siRNA to specific cells and tissues in the body is a significant challenge. Therefore, we aim to construct a functionalized single-walled carbon nanotube (F-CNT) bound to siRNA from Caspase3. The obtained gene transfer carrier F-CNT-siCas3 not only demonstrated a good water solubility and biocompatibility, but also had a high transfection efficiency of up to 82%, which significantly downregulated the expression level of the Caspase3 gene miRNA and protein in primary cardiomyocytes. Furthermore, it was verified by in vivo experiments that Caspase3 gene silencing had obvious protective effects on myocardial cell apoptosis, ventricular remodeling, and cardiac function in Sprague-Dawley (SD) rats after coronary artery ligation. This study may provide an important theoretical basis for the application of F-CNT in vivo siRNA gene therapy to treat cardiovascular diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available