4.7 Article

Evaluating Quality of Screen Content Images Via Structural Variation Analysis

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TVCG.2017.2771284

Keywords

Computer-generated signals; screen content images; quality evaluation; structural variation; human visual system

Funding

  1. National Natural Science Foundation of China [61703009, 61533002]
  2. Nova Programme Interdisciplinary Cooperation Project [Z161100004916041]
  3. Singapore MoE [M4011379, RG141/14]

Ask authors/readers for more resources

With the quick development and popularity of computers, computer-generated signals have drastically invaded into our daily lives. Screen content image is a typical example, since it also includes graphic and textual images as components as compared with natural scene images which have been deeply explored, and thus screen content image has posed novel challenges to current researches, such as compression, transmission, display, quality assessment, and more. In this paper, we focus our attention on evaluating the quality of screen content images based on the analysis of structural variation, which is caused by compression, transmission, and more. We classify structures into global and local structures, which correspond to basic and detailed perceptions of humans, respectively. The characteristics of graphic and textual images, e.g., limited color variations, and the human visual system are taken into consideration. Based on these concerns, we systematically combine the measurements of variations in the above-stated two types of structures to yield the final quality estimation of screen content images. Thorough experiments are conducted on three screen content image quality databases, in which the images are corrupted during capturing, compression, transmission, etc. Results demonstrate the superiority of our proposed quality model as compared with state-of-the-art relevant methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available