4.7 Article

Adaptive Quality-of-Service-Based Routing for Vehicular Ad Hoc Networks With Ant Colony Optimization

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 66, Issue 4, Pages 3249-3264

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2016.2586382

Keywords

Ant colony optimization (ACO); models; quality of service (QoS); routing protocol; vehicular ad hoc networks (VANETs)

Ask authors/readers for more resources

Developing highly efficient routing protocols for vehicular ad hoc networks (VANETs) is a challenging task, mainly due to the special characters of such networks: large-scale sizes, frequent link disconnections, and rapid topology changes. In this paper, we propose an adaptive quality-of-service (QoS)-based routing for VANETs called AQRV. This new routing protocol adaptively chooses the intersections through which data packets pass to reach the destination, and the selected route should satisfy the QoS constraints and fulfil the best QoS in terms of three metrics, namely connectivity probability, packet delivery ratio (PDR), and delay. To achieve the given objectives, we mathematically formulate the routing selection issue as a constrained optimization problem and propose an ant colony optimization (ACO)-based algorithm to solve this problem. In addition, a terminal intersection (TI) concept is presented to decrease routing exploration time and alleviate network congestion. Moreover, to decrease network overhead, we propose local QoS models (LQMs) to estimate real time and complete QoS of urban road segments. Simulation results validate our derived LQM models and show the effectiveness of AQRV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available