4.6 Article

Identifying in silico how microstructural changes in cellular fruit affect the drying kinetics

Journal

SOFT MATTER
Volume 16, Issue 43, Pages 9929-9945

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sm00749h

Keywords

-

Funding

  1. Swiss National Science Foundation SNSF [200021_160047]
  2. Swiss National Science Foundation (SNF) [200021_160047] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Convective drying of fruits leads to microstructural changes within the material as a result of moisture removal. In this study, an upscaling approach is developed to understand and identify the relation between the drying kinetics and the resulting microstructural changes of apple fruit, including shrinkage of cells without membrane breakage (free shrinkage) and with membrane breakage (lysis). First, the effective permeability is computed from a microscale model as a function of the water potential. Both temperature dependency and microstructural changes during drying are modeled. The microscale simulation shows that lysis, which can be induced using various pretreatment processes, enhances the tissue permeability up to four times compared to the free shrinkage of the cells. Second, via upscaling, macroscale modeling is used to quantify the impact of these microstructural changes in the fruit drying kinetics. We identify the formation of a barrier layer for water transport during drying, with much lower permeability, at the tissue surface. The permeability of this layer strongly depends on the dehydration mechanism. We also quantified how inducing lysis or modifying the drying conditions, such as airspeed and relative humidity, can accelerate the drying rate. We found that inducing lysis is more effective in increasing the drying rate (up to 26%) than increasing the airspeed from 1 to 5 m s(-1) or decreasing the relative humidity from 30% to 10%. This study quantified the need for including cellular dehydration mechanisms in understanding fruit drying processes and provided insight at a spatial resolution that experiments almost cannot reach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available