4.7 Article

Low-Frequency versus High-Frequency Ultrasound-Mediated Transdermal Delivery of Agomelatine-Loaded Invasomes: Development, Optimization and in-vivo Pharmacokinetic Assessment

Journal

INTERNATIONAL JOURNAL OF NANOMEDICINE
Volume 15, Issue -, Pages 8893-8910

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S283911

Keywords

agomelatine; invasomes; transdermal; sonophoresis; low frequency ultrasound

Ask authors/readers for more resources

Aim: Agomelatine (AGM) is the first melatonergic antidepressant. It suffers from low oral bioavailability (<5%) due to extensive hepatic metabolism. The current work aimed to develop an alternative AGM-loaded invasomes to enhance transdermal drug bioavailability. Methodology: AGM-loaded invasomes were developed using two drug: lipid ratios (1:10 or 1:7.5), four terpene types (limonene, cineole, fenchone or citral) and two terpene concentrations (0.75% or 1.5%, w/v). They were characterized for drug entrapment efficiency (EE%), particle size (PS), zeta potential (ZP) and drug released percentages after 0.5h (Q(0.)(5h)) and 8h (Q(8h)). The optimum invasomes (I1, I2 and I4) were evaluated for morphology, drug-crystallinity, and ex-vivo drug flux. The variables influencing sonophoresis of the best achieved invasomal gel system (I2) were optimized including, ultrasound frequency (low, LFU or high, HFU), mode (pulsed or continuous), application period (10 min or 15 min) and duty cycle (50% or 100%). AGM pharmacokinetics were evaluated in rabbits following transdermal application of I2-LFU-C4 system, relative to AGM oral dispersion. Results: The superiority of 12 invasomes [comprising AGM and phosphatidylcholine (1:10) and limonene (1.5% w/v)] was statistically revealed with respect to EE% (78.6%), PS (313 nm), ZP (-64 mV), Q(0.)(5h) (30.1%), Q(8h) (92%), flux (10.79 mu g/cm2/h) and enhancement ratio (4.83). The optimum sonophoresis conditions involved application of LFU in the continuous mode for 15 min at a 100% duty cycle (I2-LFU-C4 system). The latter system showed significantly higher C-max, and relative bioavailability (approximate to 7.25 folds) and a similar T-max (0.5 h). Conclusion: I2-LFU-C4 is a promising transdermal system for AGM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available