4.6 Article

Perovskite Electronic Ratchets for Energy Harvesting

Journal

ADVANCED ELECTRONIC MATERIALS
Volume 6, Issue 12, Pages -

Publisher

WILEY
DOI: 10.1002/aelm.202000831

Keywords

electronic ratchets; energy harvesting; perovskite; transistors

Funding

  1. U.S. Department of Energy (DOE) [DE-AC36-08GO28308]
  2. Laboratory Directed Research and Development (LDRD) Program at NREL
  3. Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center - Office of Science, Office of Basic Energy Sciences within the U.S. DOE

Ask authors/readers for more resources

Electronic ratchets are energy-harvesting devices that can utilize spatially asymmetric potential distributions to convert nondirectional/random sources of energy into direct current. The potential asymmetry can be generated in a number of ways, but one purported mechanism is to redistribute ions directly within the active material. Utilizing the known propensity for ion migration in lead-halide perovskites (LHP), the first LHP flashing electronic ratchet is demonstrated by using a voltage stress to intentionally redistribute halide ions within a prototypical 2D perovskite. The resulting asymmetric potential distribution across the 2D perovskite allows for conversion of both electronic noise and unbiased square-wave potentials into current. Furthermore, simultaneous application of light illumination and voltage stress enhances the asymmetric potential distribution, enabling higher current than the nonilluminated device. This work presents an electronic ratchet system that exploits facile ion migration, which can be modified by both electrical and optical stimuli, providing a model system with the potential to test outstanding mechanistic questions for electronic ratchets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available