4.6 Article

Molecular recognition at the air-water interface: nanoarchitectonic design and physicochemical understanding

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 22, Issue 43, Pages 24856-24869

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp04174b

Keywords

-

Funding

  1. JSPS KAKENHI [JP16H06518, JP20H00392, JP20H00316]

Ask authors/readers for more resources

Although molecular recognition at the air-water interface has been researched for over 30 years, investigations on its fundamental aspects are still active research targets in current science. In this perspective article, developments and future possibilities of molecular recognition at the air-water interface from pioneering research efforts to current examples are overviewed especially from the physico-chemical viewpoints. Significant enhancements of binding constants for molecular recognition are actually observed at the air-water interface although molecular interactions such as hydrogen bonding are usually suppressed in aqueous media. Recent advanced analytical strategies for direct characterization of interfacial molecules also confirmed the promoted formation of hydrogen bonding at the air-water interfaces. Traditional quantum chemical approaches indicate that modulation of electronic distributions through effects from low-dielectric phases would be the origin of enhanced molecular interactions at the air-water interface. Further theoretical considerations suggest that unusual potential changes for enhanced molecular interactions are available only within a limited range from the interface. These results would be related with molecular recognition in biomolecular systems that is similarly supported by promoted molecular interactions in interfacial environments such as cell membranes, surfaces of protein interiors, and macromolecular interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available