4.8 Article

Random Polymerization Strategy Leads to a Family of Donor Polymers Enabling Well-Controlled Morphology and Multiple Cases of High-Performance Organic Solar Cells

Journal

ADVANCED MATERIALS
Volume 32, Issue 52, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202003500

Keywords

donor polymers; nonfullerene organic solar cells; random polymerization strategy

Funding

  1. National Key Research and Development Program of China - MOST (the organization is the Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Pe [2019YFA0705900]
  2. Shen Zhen Technology and Innovation Commission [JCYJ20170413173814007, JCYJ20170818113905024]
  3. Basic and Applied Basic Research Major Program of Guangdong Province [2019B030302007]
  4. Hong Kong Research Grants Council (Research Impact Fund) [R6021-18, 16305915, 16322416, 606012, 16303917]
  5. Hong Kong Innovation and Technology Commission [ITC-CNERC14SC01, ITS/471/18]
  6. ONR grant [N000141712204, 11.0.1.2]
  7. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  8. U.S. Department of Defense (DOD) [N000141712204] Funding Source: U.S. Department of Defense (DOD)

Ask authors/readers for more resources

Developing high-performance donor polymers is important for nonfullerene organic solar cells (NF-OSCs), as state-of-the-art nonfullerene acceptors can only perform well if they are coupled with a matching donor with suitable energy levels. However, there are very limited choices of donor polymers for NF-OSCs, and the most commonly used ones are polymers named PM6 and PM7, which suffer from several problems. First, the performance of these polymers (particularly PM7) relies on precise control of their molecular weights. Also, their optimal morphology is extremely sensitive to any structural modification. In this work, a family of donor polymers is developed based on a random polymerization strategy. These polymers can achieve well-controlled morphology and high-performance with a variety of chemical structures and molecular weights. The polymer donors are D-A1-D-A2-type random copolymers in which the D and A1 units are monomers originating from PM6 or PM7, while the A2 unit comprises an electron-deficient core flanked by two thiophene rings with branched alkyl chains. Consequently, multiple cases of highly efficient NF-OSCs are achieved with efficiencies between 16.0% and 17.1%. As the electron-deficient cores can be changed to many other structural units, the strategy can easily expand the choices of high-performance donor polymers for NF-OSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available